Calculating the Work Done on a Hoop to Stop It

Explanation:

Given Data:
Mass of the hoop, m = 130 kg
Initial speed of the hoop, u = 0.18 m/s
Finally it stops, v = 0

We know that the work done by an object is equal to the change in its kinetic energy. Final kinetic energy of the hoop is equal to 0 as the hoop stops. So, W=-(K_t+K_r), where K_t and K_r are translational and rotational kinetic energy of the hoop.
Therefore, W=-(1/2 * m * v^2 + 1/2 * I * ω^2), where I = m * r^2 and ω = v/r.

Substitute the given values:
W = -m * v^2
W = -130 kg * (0.18 m/s)^2
W = -4.21 Joules
So, the work done on the hoop to stop it is 4.21 Joules.

← What is the magnitude of the torque due to gravity on the kite with respect to your position Why do greenhouse gases such as co2 and n2o contribute to an increase in earth s atmospheric temperature →