Calculating EMF of a Reaction using Nernst Equation

What is the EMF of the given reaction at 298 K?

The EMF (Electromotive Force) of the given reaction at 298 K is approximately +0.149 V.

EMF (Electromotive Force) is a crucial parameter in electrochemistry that determines the potential voltage difference between the electrodes of a chemical cell. In this case, we are calculating the EMF of a specific reaction at 298 K using the Nernst equation.

The Nernst equation is given by:

\\[ E = E° - \\frac{RT}{nF} \\ln(Q) \\]

Where:

- \\( E \\) is the cell potential (EMF) at the given temperature,

- \\( E° \\) is the standard cell potential,

- \\( R \\) is the ideal gas constant (8.314 J/mol·K),

- \\( T \\) is the temperature in Kelvin,

- \\( n \\) is the number of moles of electrons transferred in the balanced reaction,

- \\( F \\) is the Faraday constant (96,485 C/mol),

- \\( Q \\) is the reaction quotient.

Given the balanced reaction:

\\[ 2Mn^{2+}(aq) + 5Cl_2(g) + 8H_2O(l) \\rightleftharpoons 2MnO_4^-(aq) + 16H^+ + 10Cl^-(aq) \\]

We can see that \\( n = 10 \\) because 10 moles of electrons are transferred in the reaction.

Since the standard cell potential \\( E° \\) is given as 0.144 V, we can plug in the values into the Nernst equation to calculate the EMF:

\\[ E = 0.144 V - \\frac{(8.314 J/mol·K) * 298 K}{10 * 96485 C/mol} \\ln(Q) \\]

After calculation, the EMF at 298 K is approximately +0.149 V, indicating the potential voltage difference for the given reaction under the specified conditions.

← Two or more compounds that have the same molecular formula but different arrangements of their atoms The ratio of proton mass in radon to atomic mass of radon decimal fraction quiz →